In situ X-ray Absorption Spectroscopy Study on Water Formation Reaction of Palladium Metal Nanoparticle Catalysts

Daiju Matsumura, Yasuo Nishihata
Japan Atomic Energy Agency

Masashi Taniguchi, Hirohisa Tanaka
Daihatsu Motor Co., Ltd.

Advanced Nuclear Hydrogen Safety Research Program
(Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry)
Severe accident at Fukushima nuclear power plant: **Hydrogen explosion**

Hydrogen management system using external electric power could not work due to shut down of all outside electric supplies

Needs of catalyst without electric power supply for hydrogen management

Passive Autocatalytic Recombiner (PAR)

Hydrogen recombination reaction (water formation reaction) \[H_2 + \frac{1}{2}O_2 = H_2O \]

Precious metal nanoparticle such as Pd is used
In containment building, CO generation is assumed in severe accident

→ **CO poisoning effect of water formation** reaction should be studied

→ Structural change of Pd nanoparticles during catalytic reaction is studied by **in situ and real-time-resolved X-ray Absorption Fine Structure (XAFS)**
Method: XAFS (X-ray Absorption Fine Structure)

Principle
- Interference of scattered photoelectron waves from neighbor atoms
- Fine structure in absorption spectroscopy

XAFS spectroscopy
- Electronic structure
- Atomic structure

Feature
- Element selectivity
- Local sensitivity

Even under 1% element is selectively observed
→ Good for catalyst
Dispersive optics

Conventional XAFS

Motion of monochromator

Dispersive XAFS

No mechanical motion

SPring-8 (Japan), beamline BL14B1

Fast and Stable XAFS

→ In situ and Real-time-resolved XAFS
Real-time-resolved XAFS

Ex.) Pd(4 wt%)/Al₂O₃

Dispersive optics, Si(422), Pd K-edge
SPring-8 BL14B1, 2 Hz observation

Change of spectra during water formation reaction
Absorption edge change

Sample: Pd(2wt%)/Al₂O₃

Oxidation

Pd absorption edge (eV)

Gas flow start

Reduction

Complete metal state before gas dosing

H₂ & O₂

Only O₂
Room temperature, H_2 and O_2 reaction

Pd/Al$_2$O$_3$: Surface oxide layer creation for all nanoparticles

Pd/LaFeO$_3$: Less creation of oxide layer

→ Correlation between surface oxide layer and catalysis
Gas switching test: pressure dependence

\[\text{Pd(2wt\%)/Al}_2\text{O}_3, \text{ room temperature} \]

H\(_2\) → O\(_2\) → H\(_2\) → O\(_2\) → … 10 s gas switching

Pd hydride creation

Pd hydride creation in case of hydrogen excess condition

- \(\text{H}_2/\text{O}_2=10\%/2\%\)
- \(\text{H}_2/\text{O}_2=10\%/4\%\)
- \(\text{H}_2/\text{O}_2=5\%/4\%\)
- \(\text{H}_2/\text{O}_2=2\%/4\%\)

Gas flow start

- \(\text{H}_2/\text{O}_2=2\%/4\%:\)
 - Half of oxide layer was removed
Gas switching test: temperature dependence

Pd(2wt%)/Al₂O₃

H₂/O₂=2%/4%

O₂→H₂→O₂→… 10 s gas switching

Temperature increase (Catalysis increase) → Oxide layer growth

Oxidation
Reduction
Oxide layer is created in both cases of “H₂ and O₂” and “Only O₂”

→

After creation of surface oxide layer, water formation reaction proceeds

Surface oxide layer creation of Pd nanoparticles should be studied
Gas switching test:
CO effect

Severe accident → High temperature → CO generation

$O_2 \rightarrow H_2 \rightarrow O_2 \rightarrow \ldots$ 10 s gas switching

Gas flow start

RT without CO

RT with CO

200 °C with CO

CO effect

Thermal effect

Pd(2wt%)/Al$_2$O$_3$

$H_2/O_2=2\%/4\%$
CO poisoning for Pd

Over 200 °C,
CO + 1/2O₂ = CO₂
reaction starts.

Stop of water formation reaction

Reaction proceeds on oxide layer

Water formation reaction also starts.

Competition of oxidation reactions of H₂ and CO is now being examined
Structure of Pd nanoparticle during water formation reaction was studied by in situ and real-time-resolved XAFS

- Creation of surface oxide layer of Pd nanoparticle is important for water formation catalytic reaction

- Reaction mechanism of water formation reaction and CO poisoning effect were revealed.

Further experiment will assist the development of passive autocatalytic recombiner for nuclear plant.

Advanced Nuclear Hydrogen Safety Research Program
(Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry)