Outward propagation velocity and acceleration characteristics in hydrogen-air deflagration

Toshiyuki KATSUMI
Hiroyuki KOBAYASHI
Takuro AIDA
Hiroki AIBA
Satoshi KADOWAKI
1-1 Combustion safety

Hydrogen

- Clean fuel
 - Zero carbon emission
 - Combustion product: H_2O
 - Generated by renewable energy source
 - Fuel of a fuel cell vehicle, e.g. TOYOTA MIRAI

- Dangerous gas
 - Wide flammable range
 - High burning velocity etc.

- Generation in a nuclear power plant
 - Radiation degradation of water
 - Reaction of Zr with water
1-2 Risk assessment

- Risk assessment
 i. Hazard Identification
 ii. Risk estimation
 iii. Risk evaluation
 iv. Risk reduction

Important!

Adequate estimation is necessary
- Flame propagation velocity
- Leakage and flow phenomena
 etc.

- Prediction of flame propagation velocity

Conventional method
(Propagation velocity of spherical flame)

\[S_b = S_u \left(\frac{T_b}{T_u} \right) \]
1-3 Flame acceleration

- Intrinsic instability
 - Cellular flame front forms
 - Flame front area becomes larger
 - Flame propagation accelerates
 - In a huge space, cellular flame develops more

- For adequate estimation of flame propagation velocity, flame acceleration needs to be considered.

- Flame acceleration owing to intrinsic instability is influenced by initial conditions.
 - Initial temperature
 - Initial pressure
 - Gas composition (H₂, Air, CO₂, H₂O, etc.)
2. Objective

We aim to understand flame acceleration characteristics.

- Effect of equivalence ratio
- Effect of initial temperature

We will establish a brand-new model of flame propagation considering a flame acceleration.

Experiment

- Explosion test of Hydrogen-air mixture in a closed chamber at several equivalence ratios and initial temperatures
- Observation of flame propagation behavior using Schlieren photography
3-1 Experimental apparatus

Closed chamber
Volume: 73L
Material: SUS304
Window
Diameter: 300mm
Thickness: 140mm
Material: Quartz
Quantity: 4

Others
Ignition
Voltage: 7.5kV
Energy: 110mJ
Data logger
Sampling rate: 10kHz
High speed video camera
Frame rate: 10kfps
Resolution: 1024x1024pixels

Device list
Schlieren photography: Mizojiri SL-350
High speed camera: Photron SA-X
Pressure sensor: Kistler 6045A31
Data logger: Keyence NR6000
3-2 Experimental procedure

① Heat up the chamber
② Vacuum the chamber
③ Fill the chamber with hydrogen and air
④ Ignite by spark at the center of the chamber after gas temperature reaches a target temperature
⑤ Ignition controller triggers data logger and high speed video camera at the same time as ignition

Device list
- Schlieren photography: Mizojiri SL-350
- High speed camera: Photron SA-X
- Pressure sensor: Kistler 6045A31
- Data logger: Keyence NR600
3-3 Experimental condition

- Initial condition
 Mixture: Hydrogen-air
 Pressure: 101.3kPa abs.

- Explosion test
 Explosion tests were performed 3 times in each case which is shown as blue in the table1.

Table 1 Test condition

<table>
<thead>
<tr>
<th>Initial temperature [deg C]</th>
<th>Equivalence ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
3-4 Experimental results

Equivalence ratio $\phi = 1.0$

Equivalence ratio $\phi = 0.5$
3-4 Experimental results

<table>
<thead>
<tr>
<th>Time</th>
<th>2.0 ms</th>
<th>4.0 ms</th>
<th>6.0 ms</th>
<th>8.0 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) \(\varphi = 1.0 \ (r_b = 2.0, 5.0, 10, 15 \ [\text{cm}]) \)

<table>
<thead>
<tr>
<th>Time</th>
<th>6.5 ms</th>
<th>13.0 ms</th>
<th>19.5 ms</th>
<th>26.0 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) \(\varphi = 0.5 \ (r_b = 2.0, 5.0, 10, 15 \ [\text{cm}]) \)
3-5 Flame propagation velocity -Effect of equivalence ratio-

- Flame propagation velocities increase with flame radius
- At small radius, influence of flame stretch appears

Initial temperature: 25 deg C
There is not noticeable difference in the dependencies of flame propagation velocity on flame radius at both temperatures.
4-1 Influence of flame stretch

- Flame propagation velocities of planar flames, S_{b0}, were obtained from the relation between flame propagation velocity, S_b, and flame stretch rate, κ.

- Flame radiuses, r, where flame propagation velocity separates from the regression line are defined as critical flame radius, r_0.

Relation between burning velocity and flame stretch rate

\[
S_s - S_{u0} = -L\kappa \\
S_b = -L\kappa \left(\frac{\rho_u}{\rho_b}\right) + S_{b0} = -L\frac{2S_b}{r} + S_{b0}
\]

- S_s: Burning velocity of stretched flame
- S_{u0}: Laminar burning velocity
- L: Markstein length
- κ: Flame stretch rate (= $2S_b/r$)
- r: Flame radius
- r_0: Critical radius
- ρ_u: Density of unburnt mixture
- ρ_b: Density of burnt gas
- S_b: Flame propagation velocity
- S_{b0}: Propagation velocity of planar flame

\[
S_b = 0.1267 \frac{2S_b}{r} + 441.8 \quad \therefore S_{b0} = 441.8
\]
4-2 Flame propagation velocity of planar flame

- Experimental data show good agreement with the data of other researchers
- Propagation velocity of planar flame becomes higher at higher initial temperature

Reference)
• At $\phi \geq 0.6$, critical radius becomes larger at higher initial temperature because formation of cellular flame is suppressed.
• At $\phi \leq 0.5$, critical radiuses at both temperature are nearly same because influence of flame stretch is stronger than influence of cellular flame.
5-1 Flame acceleration model

\[S_b = \alpha \ln \left(\frac{r}{r_0} \right) + \beta \]

Influence of flame acceleration

\[S_b = \frac{dr}{dt} \]

\[\beta = S_{b0} \left(= S_{u0} \frac{\rho_u}{\rho_b} \right) \]

- \(r \): Flame radius
- \(r_0 \): Critical radius
- \(\rho_u \): Density of unburnt mixture
- \(\rho_b \): Density of burnt gas
- \(S_b \): Flame propagation velocity
- \(S_{b0} \): Propagation velocity of planar flame
- \(S_{u0} \): Burning velocity of flat flame
5-2 Influence of cellular flame

- Fitting flame propagation velocities by acceleration model, influence coefficients of flame radius, α, were obtained.

\[S_b = \alpha \ln \left(\frac{r}{r_0} \right) + \beta \]

\[\beta_{\phi=0.6} = S_{b0,\phi=0.6} = 538.9 \]

\[S_b = 182.7 \ln(r^*) + 538.9 \]

\[\therefore \alpha = 182.7 \]
5-2 Influence of cellular flame

\[S_b = \alpha \ln\left(\frac{r}{r_0}\right) + \beta \]

\[\frac{S_b}{S_{b0}} = \frac{\alpha}{\beta} \ln\left(\frac{r}{r_0}\right) + 1 \]

\(\alpha/\beta\) is influence coefficient of flame radius on flame acceleration.

- Influence of flame radius becomes stronger at lower equivalence ratio
 \(\Rightarrow\) \(S_b/S_{b0}\) becomes larger owing to development of cellular flame.
- Influence of flame radius becomes weaker at higher initial temperature.
5. Summary

- As flame radius increased, cellular flame developed more and flame propagation velocity increased.

- Propagation velocity of planar flame obtained experimentally show good agreement with the data of other researchers.

- At lower equivalence ratio, cellular flame developed more and \(S_b/S_{b0} \) became larger.

- At higher initial temperature, flame propagation velocity of planar flame increased, and flame accelerations caused by cellular flame were suppressed.

- Based on these results, we proposed the flame acceleration model using logarithm of flame radius.
6. Future plan

- In order to understand more effects of initial temperature, explosion tests will be performed at higher initial temperature, 75 deg C.

- In order to see effects of composition of mixture gas, we will add CO$_2$ into mixture gas as first step.

- In order to see effects of initial pressure, we will conducted explosion tests at several pressures.
Thank you for your kind attention!!

Acknowledgment

The results of this study are performed on the re-entrustment from the LWR hydrogen safety program of the Japan Atomic Energy Agency, which is funded by the Ministry of Economy, Trade and Industry.