Spherical Flame Acceleration in Lean Hydrogen-Air Flames

C.R. Bauwens, J.M. Bergthorson, and S.B. Dorofeev

6th International Conference on Hydrogen Safety
Yokohama, Japan
October 21st, 2015
Accidental Explosions
Motivation – Accidental Explosions

- Flame propagation velocity key parameter to determine pressure that develop
- Cell formation can significantly increase propagation velocity
- Need a better understanding of how cells form and growth with flame
 - Bradley et al. 2001, Kim et al., 2015

Limited data on atmospheric pressure flames, especially at large-scale
Background – Darrieus-Landau Instability

- Intrinsic instability due to expansion of burned gas

- Extensively studied
 - Experimentally
 - Manton et al. (1952), Bradley and Harper (1994), Clanet and Searby (1998), Law et al. (2005)…
 - Analytically
Background – Spherical Flames

- Initially flame stabilized by curvature and stretch
- At a critical radius, R_0, cells spontaneously form on flame surface
- Cell formation accompanied by rapid flame acceleration
Background – Spherical FA

- Acceleration continues indefinitely with increasing radius

- Self-similar theory
 - Gostintsev et al. (1988)
 - Correlated large scale data
 - Found: $R = R_0 + At^\alpha$
 - Acceleration mechanism explained using fractal argument
Present Study – Hydrogen-Air

- Why lean hydrogen-air?
 - Strong thermal-diffusive instability
 - Small critical radius
 - Larger increases in flame speed for the same flame size

- Examined lean hydrogen-air concentrations
 - $\phi = 0.3 - 0.6$
Experimental Setup

- 64 m3 vented enclosure (4.6 x 4.6 x 3 m3)
- Constant pressure
- Quiescent mixtures
- Weak ignition source
Visualizing Hydrogen-Air Flames

- Direct optical measurements not possible
- Traditional schlieren not feasible at large scale
- Alternate method needed
Background Oriented Schlieren

- Background Pattern
- Imaged Media
- Deflection
- Camera

Background Pattern
Background Oriented Schlieren

Raw Images → BOS Image
FM Global

Background Oriented Schlieren
Front Tracking

- Maximize images into virtual open shutter
- Difference images across multiple frames
- Calculate radius from flame cross-section
Temporal Smoothing

- Average flame surface over time (multiple images)
- Resize flame to a common length scale to eliminate motion blur
Effect of Concentration

$\phi = 0.33$

$\phi = 0.46$

$\phi = 0.57$
Results – Hydrogen-air $\phi = 0.49$

- Plot of flame speed vs. stretch rate
 \[\gamma = \frac{2}{R} \frac{dR}{dt} \]

- Linear stretch extrapolation to obtain LBV

- Critical radius, R_0, from γ_0

\[\gamma_0 = \frac{2}{R_0} \frac{dR_0}{dt} \]
Results

- Laminar burning velocity
 - Good agreement with past studies

![Graph showing laminar burning velocity comparison with past studies](image-url)
Results

- **Critical radius**
 - \(R_0 \) decreased linearly with \(\mathcal{L}_M \) (and \(\phi \))
Discussion

- Flame self-acceleration
 - Normalized curves all collapse to single relation
 - No oscillations observed

\[u^* = \left(\frac{R}{R_0} \right)^{0.24} \]
Discussion

- Fractal excess constant across full range
 \[\beta = 0.243 \pm 0.005 \]

- Equivalent to fractal exponent \(\alpha = 1.32 \)
Discussion

- Flame self-acceleration results in large increase in u_{eff}
- Flame velocity doubles when $R/R_0 = 16$ ($R = 0.3 - 0.5$ m)
Summary/Conclusions

- BOS used to characterize flame acceleration
 - Laminar burning velocities agrees with existing data
 - Critical radius decreases with concentration
 - Fractal excess constant across full range of concentrations studied

- Flame self-acceleration must be considered when modeling lean hydrogen-air flames at large scale
 - Laminar burning velocity alone will significantly under-predict flame speed
Questions?